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1 Solve the equation ln�x + 4� = 2 lnx + ln 4, giving your answer correct to 3 significant figures. [4]

2 Solve the inequality�x − 2� > 2x − 3. [4]

3 Solve the equation cot 2x + cotx = 3 for 0Å < x < 180Å. [6]

4 The curve with equationy = e2x

4+ e3x has one stationary point. Find the exact values of the coordinates

of this point. [6]

5 The parametric equations of a curve are

x = a cos4t, y = a sin4t,

wherea is a positive constant.

(i) Express
dy
dx

in terms oft. [3]

(ii) Show that the equation of the tangent to the curve at the pointwith parametert is

x sin2 t + y cos2t = a sin2t cos2t. �3�

(iii) Hence show that if the tangent meets thex-axis atP and they-axis atQ, then

OP + OQ = a,

whereO is the origin. [2]

6 It is given thatÓ a

0
x cosx dx = 0.5, where 0< a < 1

20.

(i) Show thata satisfies the equation sina = 1.5− cosa
a

. [4]

(ii) Verify by calculation thata is greater than 1. [2]

(iii) Use the iterative formula

an+1 = sin−1

P
1.5− cosan

an

Q

to determine the value ofa correct to 4 decimal places, giving the result of each iteration to
6 decimal places. [3]
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7 The number of micro-organisms in a population at timet is denoted byM. At any time the variation
in M is assumed to satisfy the differential equation

dM
dt

= k�ïM�cos�0.02t�,

wherek is a constant andM is taken to be a continuous variable. It is given that whent = 0, M = 100.

(i) Solve the differential equation, obtaining a relation betweenM, k andt. [5]

(ii) Given also thatM = 196 whent = 50, find the value ofk. [2]

(iii) Obtain an expression forM in terms oft and find the least possible number of micro-organisms.
[2]

8 The complex number 1− i is denoted byu.

(i) Showing your working and without using a calculator, express

i
u

in the formx + iy, wherex andy are real. [2]

(ii) On an Argand diagram, sketch the loci representing complex numbersÏ satisfying the equations
�Ï − u � = �Ï � and�Ï − i � = 2. [4]

(iii) Find the argument of each of the complex numbers representedby the points of intersection of
the two loci in part(ii). [3]

9 Two planes have equationsx + 3y − 2Ï = 4 and 2x + y + 3Ï = 5. The planes intersect in the straight
line l.

(i) Calculate the acute angle between the two planes. [4]

(ii) Find a vector equation for the linel. [6]

10 Let f�x� = 11x + 7

�2x − 1��x + 2�2 .

(i) Express f�x� in partial fractions. [5]

(ii) Show thatÓ 2

1
f �x�dx = 1

4 + ln
�9

4

�
. [5]
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